ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
O. M. Stansfield, C. B. Scott, J. Chin
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 517-530
Technical Paper | Fuel | doi.org/10.13182/NT75-A24389
Articles are hosted by Taylor and Francis Online.
Pyrocarbon-coated microspheres of UC2, ThC2, and (Th, U)C2 utilized in fuel for high-temperature gas-cooled reactors will migrate up an imposed thermal gradient during service life. The degree of kernel migration is limited by appropriate core design to retain coating integrity. The kernel migration (amoeba effect) results from carbon transport in the fuel phase and is characterized by a rejected graphite layer on the cool side of the kernel. The thermal gradient provides the dominant driving force for the rate-controlling process, which is the self-diffusion of carbon in the fuel phase. All dicarbide kernel materials show similar kernel migration behavior; however, ThC2 has the most rapid migration rate. The migration rates may be empirically described over the temperature range of 1250 to 1900°C by the expressionwhere