ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
O. M. Stansfield, C. B. Scott, J. Chin
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 517-530
Technical Paper | Fuel | doi.org/10.13182/NT75-A24389
Articles are hosted by Taylor and Francis Online.
Pyrocarbon-coated microspheres of UC2, ThC2, and (Th, U)C2 utilized in fuel for high-temperature gas-cooled reactors will migrate up an imposed thermal gradient during service life. The degree of kernel migration is limited by appropriate core design to retain coating integrity. The kernel migration (amoeba effect) results from carbon transport in the fuel phase and is characterized by a rejected graphite layer on the cool side of the kernel. The thermal gradient provides the dominant driving force for the rate-controlling process, which is the self-diffusion of carbon in the fuel phase. All dicarbide kernel materials show similar kernel migration behavior; however, ThC2 has the most rapid migration rate. The migration rates may be empirically described over the temperature range of 1250 to 1900°C by the expressionwhere