ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Hiroshi Motoda, John Herczeg, Alexander Sesonske
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 477-496
Technical Paper | Fuel Cycle | doi.org/10.13182/NT75-A24386
Articles are hosted by Taylor and Francis Online.
A stagewise optimization of the refueling schedule for light-water reactors has been developed with emphasis on the nuclear model. The decision variables to be determined are end-of-cycle (EOC) reactivity distribution, energy output, power distribution, number of fresh fuel assemblies, number of reinsertion of used assemblies, selection of assemblies for discharge, and allocation of each fuel assembly in a two-dimensional core geometry. Division of the total problem into six phases permits usage of the most effective method in each phase. This study employed such techniques as linear programming for regionwise shuffling optimization, linear iterative search for the optimal EOC state, the minimum integrated k-deviation method for a guess allocation, and direct search for the optimal allocation of each fuel assembly, etc., all of which are interrelated. The applicability of this method to a commercial light-water reactor was demonstrated for a 1300-MW(th) boiling-water reactor by successfully generating a ten-cycle refueling schedule using a fixed enrichment of initial and reload fuel and allowing reinsertion of discharged fuel assemblies from the first to the third cycles. The results indicate a savings of as much as 14% of the fresh fuel consumption over a conventional mixed four- and five-batch scatter loading, with thermal characteristics well within design limits.