ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
W. L. Chen
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 471-476
Technical Paper | Reactor | doi.org/10.13182/NT75-A24385
Articles are hosted by Taylor and Francis Online.
A simple method has been developed for calculation of transient heat losses that occur as a hot fluid produced during a liquid-metal fast breeder reactor hypothetical core-disruptive accident expands through the fission-gas plenum region. The heat-conduction equation of the plenum cladding is formally solved by the Laplace transform for a time-dependent cladding surface temperature, and the resulting solution is numerically evaluated using an integration method based on the trapezoidal rule. The expanding hot fluid may be a two-phase mixture of sodium produced by a fuel-coolant interaction or a two-phase mixture of fuel produced by a severe nuclear excursion. Illustrative calculations have been performed considering a hypothetical fuel-coolant interaction in the Fast Flux Test Facility core.