ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. H. Kazi, T. A. Dunn, R. C. Harrison, D. O. Williams
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 450-463
Technical Paper | Reactor | doi.org/10.13182/NT75-A24383
Articles are hosted by Taylor and Francis Online.
The Army Pulse Radiation Facility Reactor is a fast pulse, or burst, reactor generally used to provide a fast neutron environment In response to several test requirements, a number of fast neutron-to-gamma converter shields have been designed, calibrated, and placed into operation to produce a pulsed or steady-state gamma environment of ionizing radiation. The four basic converter configurations are (a) a narrow pulse converter box which has produced a maximum gamma dose rate of 3.8 × 108 rad/sec with a pulse width at half-maximum power of 50 μsec; (b) a wide pulse converter box which has produced 6.7 × 107 rad/sec at 400 μsec; (c) a narrow pulse converter cavity that has produced 7.7 × 108 rad/sec at 50 μsec; and (d) a wide pulse converter cavity that has produced 7.7 × 107 rad/sec at 1 msec. In terms of rads tissue, the gamma-to-neutron dose ratio varies from 0.1 (no converter) to ∼5; while in terms of rads (silicon), the neutron dose is almost 2 orders of magnitude less than the gamma dose.