ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
E. Rolstad
Nuclear Technology | Volume 25 | Number 1 | January 1975 | Pages 7-12
Technical Paper | Reactor | doi.org/10.13182/NT75-A24345
Articles are hosted by Taylor and Francis Online.
Experiments have shown that pellet-clad mechanical interaction failures due to power increments often show up with some delay after the power increase has been applied. Fission-product stress corrosion has generally been accepted as the reason for this delay. It is suggested, however, that these failures may be caused by purely mechanical effects. Local plastic instability occurs during the power increase due to the stress concentrations over a fuel crack and results in the initiation of a crack at the inner wall which propagates rapidly by the local strain energy in the fuel and cladding. This strain energy may, however, not be sufficient to produce a through-going crack, and the crack propagation may stop unless more energy is supplied by further power increase ; however, this energy may also be supplied by extrusion of fuel along the hot center of the rod. A simple cladding stress analysis with special emphasis on the stress concentrations over fuel cracks is included to simplify the explanation of the plastic-instability fuel-extrusion failure mechanism.