ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
John Toman
Nuclear Technology | Volume 27 | Number 4 | December 1975 | Pages 692-704
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT75-A24342
Articles are hosted by Taylor and Francis Online.
The reentry drilling established communication with the top Rio Blanco detonation region at a depth of 1704 m, or ∼76 m above the top detonation center. A total of 2.8 × 106 m3 (98 × 106 ft3) of dry gas at standard conditions has now been produced during two separate test periods. Radioactive and chemical analysis of this gas and the modeling of the stimulated reservoir show the following main results: 1. No permeable connection exists between the top and the middle detonation regions, since no significant amount of the tracer incorporated in the center explosive canister was detected in the produced gas. As a consequence, results for the top detonation region only are available at this time. 2. The initial cavity radius is deduced to be 20 m (66 ft) or well within expectations. 3. Integration of the 85Kr produced indicates a yield of 34 ± 3 kt for the top explosive. 4. Of the ∼1000 Ci of tritium produced in the top explosion region, ∼5% is incorporated in the gas phase. 5. Pressure drawdown and buildup data are best reproduced by a two-layer reservoir model showing stimulated permeabilities ∼10 and 30 times original formation permeabilities, and extending to a distance of ∼3 cavity radii from the wellbore. 6. The capacity of the reservoir intercepted by the top explosive is deduced to be ∼0.2 millidarcy-meters (md-m) [0.73 millidarcy-feet (md-ft)], as contrasted with preshot estimates ranging from 1.3 md-m (4.1 md-ft) to 2.3 md-m (7.6 md-ft). Additional subsurface investigations of the other detonation regions, as well as a reevaluation of the initial reservoir properties, are in progress.