ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Dean V. Power
Nuclear Technology | Volume 27 | Number 4 | December 1975 | Pages 680-691
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT75-A24341
Articles are hosted by Taylor and Francis Online.
The coherency transfer function (CTF) is a method for summing seismograms from multiple nearly coherent sources by using a frequency domain transformation. Ground motion predictions for the nuclear explosive Rio Blanco experiment are calculated for peak vector amplitudes of acceleration, velocity, and displacement and are compared to the Rio Blanco data and the results of other prediction techniques. Predictions of amplitudes are higher than experimental results by a few percent for acceleration and displacement and by 20% for velocity. Data regression slopes are ∼12% greater than predicted values for acceleration but <5% greater for displacement and velocity. CTF predictions are found to agree with experimental results as good as or better than values predicted by other methods.