Internally pressurized specimens of unirradiated 20% cold-worked Type 316 stainless-steel cladding were rapidly heated and burst to determine mechanical behavior under various simulated reactor transient events. The tests were conducted at heating rates of 10 and 200 F°/sec. Failure temperatures from 500 to 2500°F were obtained, with the principal emphasis on the behavior above 1000°F. Failure temperatures increased with decreasing internal pressure while cladding ductility initially increased with increasing failure temperature, but above ∼2100°F the ductility decreased steadily with increasing temperature. The increase in ductility with increasing temperature was due to recovery and recrystallization of the cold-worked material, while the decrease above 2100°F resulted from grain growth. The diametral failure strains were between 0.5 to 1.0% at 1000°F. The maximum diametral failure strain values reached 8% for the 10 F°/sec ramp and 4% for the 200 F°/ sec ramp at the elevated temperatures.