ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
W. Pfeiffer, J. R. Brown, A. C. Marshall
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 352-375
Technical Paper | Reactor | doi.org/10.13182/NT75-A24310
Articles are hosted by Taylor and Francis Online.
Pulsed-neutron experiments were performed on the 330-MW Fort St. Vrain high-temperature gas-cooled reactor (HTGR) to determine the reactivity of the core for various control rod configurations while the reactor was still subcritical. For all configurations the reactivity was inferred from the in-hour equation using the measured decay constant and a calculated generation time. For the configurations near critical, both the reactivity and generation time were determined using the extrapolated area-ratio method. The originally calculated (i.e., predicted) reactivities agreed poorly with those inferred from the experiments. However, by adding 5 ppm of boron to the reflector calculational model, the calculated generation time was significantly reduced. This brought the inferred reactivity into good agreement with that calculated for all control rod configurations. This emphasizes the dependence of the interpretation of pulsed-neutron experiments on calculations and the importance of the reflector in a large HTGR. Novel aspects of these experiments included the following: extensive two-dimensional computer simulations were performed prior to the experiments to determine the optimum source and detector locations; the neutron generation time was measured near critical by pulsing two different control rod configurations; all the data were fit by least squares to a sum of exponentials corresponding to one or two prompt modes and six delayed sub-modes; and an objective procedure using “tornado plots ” was developed to determine the starting channel for the least-squares analysis.