ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Wayne Pfeiffer
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 337-351
Technical Paper | Reactor | doi.org/10.13182/NT75-A24309
Articles are hosted by Taylor and Francis Online.
Computer simulations were used to determine the optimum source location, detector location, and pulse rate prior to performing pulsed-neutron experiments on the 330-MW Fort St. Vrain high-temperature gas-cooled reactor (HTGR). The simulation procedure involved calculation of the amplitudes, decay constants, and modal shapes of the first few kinetic modes in the general expansion of the time response of the neutron flux following each pulse. By examining the nodes (zeros) of the first few harmonics (higher modes), source and detector locations could be determined that reduced or eliminated the contribution of these modes to the measured time response. Comparison of the simulated and measured time responses for the Fort St. Vrain HTGR demonstrates the effectiveness of the simulation. The kinetic modes were calculated by the eigenfunction expansion method in two-dimensional geometry assuming two energy groups and six delayed-neutron precursors. The major limitation in the calculation is the use of two-dimensional core models, i.e., the assumption of separation of variables. For most power reactors on which pulsed-neutron experiments might be performed, this limitation should not be serious.