ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. William Savery, Y. S. Huang, George M. Kowal
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 327-336
Technical Paper | Reactor | doi.org/10.13182/NT75-A24308
Articles are hosted by Taylor and Francis Online.
A computer code, MNODE, for predicting the state histories and inventories of an inert gas and water liquid and vapor flowing in a zoned containment has been developed. It employs a model that describes the unsteady flow and thermodynamics of two-phase two-component mixtures flowing among 12 connected control volumes. This calculational model can be applied to problems of hypothetical high-pressure primary coolant, feed water, or steam line ruptures in such structures as nuclear containments, tunnels, or auxiliary buildings. In comparison with previously reported zoned containment computation models, this model rigorously treats the thermodynamics of two-phase two-component mixtures of water and an inert gas, is provided with several flow model options including an inertia flow equation, and is demonstrated with substantial verification. Predictions are compared with the results of an analytical gas dynamic problem, semiscale blowdown experiments, and solutions to a subcompartment analysis standard problem by other computer codes in use within the nuclear industry.