ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
J. R. Beattie
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 233-239
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A24290
Articles are hosted by Taylor and Francis Online.
Since one purpose of reactor site selection is to minimize risk to the public, the possible range of solutions to this siting problem can be explored using probabilistic concepts about reactor fission-product releases and risks from radiation. A mathematical definition based on consideration of radiobiological hazards from releases of gaseous and volatile fission products and their associated risks would be preferred. Using an assumption that the safety of the reactor can be made to conform to a release frequency limit line proposed in 1967 by F. R. Farmer, the highest risk to an individual member of the population is calculated, and it is suggested that this will be negligible compared to the risks of everyday life, and negligible compared to the collective risk to the population from reactor accident releases. These collective risks are assessed and analyzed, with two aspects—the risk of deaths occurring from radiation-induced cancer and the risk of loss of productive capacity by the community as a result of radioactive contamination of property—being selected as the most important risks to study. A factor of < 10 in probability of a given degree of injury or damage distinguishes remote sites from present-day semiurban sites in the United Kingdom. If the suggested release frequency limits can be achieved by existing reactor safety procedures and technology, population safety would appear to be adequately safeguarded. Therefore one may argue that the resources of society might be better employed in tackling the safety problems of non-nuclear industries and activities with the same diligence that has characterized the safe development and deployment of nuclear power.