ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. R. Beattie
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 233-239
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A24290
Articles are hosted by Taylor and Francis Online.
Since one purpose of reactor site selection is to minimize risk to the public, the possible range of solutions to this siting problem can be explored using probabilistic concepts about reactor fission-product releases and risks from radiation. A mathematical definition based on consideration of radiobiological hazards from releases of gaseous and volatile fission products and their associated risks would be preferred. Using an assumption that the safety of the reactor can be made to conform to a release frequency limit line proposed in 1967 by F. R. Farmer, the highest risk to an individual member of the population is calculated, and it is suggested that this will be negligible compared to the risks of everyday life, and negligible compared to the collective risk to the population from reactor accident releases. These collective risks are assessed and analyzed, with two aspects—the risk of deaths occurring from radiation-induced cancer and the risk of loss of productive capacity by the community as a result of radioactive contamination of property—being selected as the most important risks to study. A factor of < 10 in probability of a given degree of injury or damage distinguishes remote sites from present-day semiurban sites in the United Kingdom. If the suggested release frequency limits can be achieved by existing reactor safety procedures and technology, population safety would appear to be adequately safeguarded. Therefore one may argue that the resources of society might be better employed in tackling the safety problems of non-nuclear industries and activities with the same diligence that has characterized the safe development and deployment of nuclear power.