ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
J. R. Beattie
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 233-239
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A24290
Articles are hosted by Taylor and Francis Online.
Since one purpose of reactor site selection is to minimize risk to the public, the possible range of solutions to this siting problem can be explored using probabilistic concepts about reactor fission-product releases and risks from radiation. A mathematical definition based on consideration of radiobiological hazards from releases of gaseous and volatile fission products and their associated risks would be preferred. Using an assumption that the safety of the reactor can be made to conform to a release frequency limit line proposed in 1967 by F. R. Farmer, the highest risk to an individual member of the population is calculated, and it is suggested that this will be negligible compared to the risks of everyday life, and negligible compared to the collective risk to the population from reactor accident releases. These collective risks are assessed and analyzed, with two aspects—the risk of deaths occurring from radiation-induced cancer and the risk of loss of productive capacity by the community as a result of radioactive contamination of property—being selected as the most important risks to study. A factor of < 10 in probability of a given degree of injury or damage distinguishes remote sites from present-day semiurban sites in the United Kingdom. If the suggested release frequency limits can be achieved by existing reactor safety procedures and technology, population safety would appear to be adequately safeguarded. Therefore one may argue that the resources of society might be better employed in tackling the safety problems of non-nuclear industries and activities with the same diligence that has characterized the safe development and deployment of nuclear power.