ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. A. Gaafer, L. Mango, + F. V. Orestano,†, F. Pistella
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 187-206
Technical Paper | Reactor | doi.org/10.13182/NT75-A24286
Articles are hosted by Taylor and Francis Online.
Methods have been formulated to treat the rod cluster control for present-generation presurized water reactors within the computational codes available at Comitato Nazionale per l’Energia Nucleare (CNEN) for light water reactors. The reliability of these procedures has been verified by comparing the calculated results with the most significant experimental data available from measurements performed by the Centre d’Étude de l’Énergie Nucléaire-Studiecentrum Voor Kernenergie (Belgian Plutonium Recycling Program), Babcock & Wilcox (Lumped Burnable Poison Program), Westinghouse, and CNEN (Italian Nuclear Ship Propulsion Program). Reactivity and power distributions have been evaluated for a wide set of experimental configurations including several types of absorbing rods (e.g., B4C, Pyrex, and Ag-In-Cd alloy) with different radii in different lattices made of various fuel materials (e.g., UO2, PuO2, and UO2/PuO2).