ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Aaron E. Craft, Jeffrey C. King
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 198-209
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A22315
Articles are hosted by Taylor and Francis Online.
The MInes NEutron Radiography facility (MINER facility) installed at the United States Geological Survey TRIGA Reactor provides new capabilities for both researchers and students at the Colorado School of Mines. The facility consists of a number of components, including a neutron beamline and beamstop, an optical table, an experimental enclosure and associated interlocks, a computer control system, a microchannel plate imaging detector, and the associated electronics.Radiographs of a sensitivity indicator - a resolution indicator developed by the American Society for Testing and Materials - taken using both the digital detector and the transfer method provide one demonstration of the radiographic capabilities of the new facility. Calibration fuel pins manufactured using copper and stainless steel surrogate fuel pellets provide additional specimens for demonstration of the new facility and offer a comparison between digital and film radiography at the new facility. The calibration pins contain simulated defects of known dimensions, including pellet-clad gaps, gaps between pellets, and central voids within the pellets. Comparison of the radiographs taken by the two methods reveals that the digital detector does not produce high-quality images when compared to film radiography. Additionally, there are a number of artifacts in the digital images produced by the image acquisition system. The quality of the film images demonstrates that the problems with the digital images are a product of the digital imaging system and not the neutron beam.