ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Taraknath Woddi, Kenneth N. Ricci
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 156-168
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-22
Articles are hosted by Taylor and Francis Online.
A parametric study was performed on the thorium-to-233U breeder fuel cycle for pressurized heavy water reactors (PHWRs) similar to the existing CANDU type. The objective was to estimate the sensitivity of the thorium breeder PHWR energy cost to fuel reprocessing costs, reactor capital costs, fuel specific power, fuel-to-moderator ratio, and reactor size and to find optimal parameters to minimize the energy cost for reasonable economic assumptions. A baseline model thorium heavy water breeder reactor (THWBR) was developed from these parameters to show how an existing PHWR would perform economically if fueled only with thorium and the 233U bred and reprocessed from that thorium. This study found that the baseline model THWBR is not cost competitive with the current PHWR fuel cycle using natural uranium but may be significantly closer in cost to the natural uranium fuel cycle than models discussed in previous publications. Because the proposed thorium reactor can, with the assistance of some thorium fuel reprocessing, achieve a higher average fuel burnup than the once-through natural uranium cycle, the waste management costs will be lower while the reprocessing costs will be higher than the natural uranium fuel system. When the strategic and proliferation-resistance values are included, the thorium breeder PHWR may be competitive with natural uranium PHWRs and light water reactors in some markets. The next phase of our study is expected to show how to use novel combinations of unconventional PHWR core geometries to increase the breeding ratio and fuel burnup, decrease the reprocessing requirements, and make a thermal breeder reactor more economical.