ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Tsung-Kuang Yeh, Mei-Ya Wang, Robin Wu
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 148-155
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A22311
Articles are hosted by Taylor and Francis Online.
For mitigating intergranular stress corrosion cracking in operating boiling water reactors (BWRs), hydrogen water chemistry, a common technique for producing a reducing coolant environment, has been adopted worldwide. However, the issue of accompanied buildup of radiation field at feedwater hydrogen concentrations >0.5 ppm has been a concern of the utilities. In particular, the increase in shutdown dose rate would pose a serious health threat to maintenance workers during outages.To maintain low shutdown dose rates in drywells, the operators of Kuosheng Nuclear Power Plant adopted effective techniques to improve the coolant chemistry in their two BWRs, leading to a reduction in iron concentration in the feedwater and in 60Co activity in the primary coolant. The radiation buildup in the recirculation system was lowered through an optimized management of hydrogen injection during regular operations and an enhanced operation mode of the reactor cleanup system at the early stage of an outage. In the meantime, the shutdown dose rates in the entire primary coolant circuit, especially in the drywell, were also significantly reduced. This paper describes the adopted techniques and results of water chemistry improvement at the Kuosheng nuclear power reactor.