ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. L. Beatty, F. A. Carlsen, Jr., J. L. Cook
Nuclear Technology | Volume 1 | Number 6 | December 1965 | Pages 560-566
Technical Paper | doi.org/10.13182/NT65-A20584
Articles are hosted by Taylor and Francis Online.
The effects of varying deposition conditions on the properties, especially the structural features, of pyrolytic carbon deposited on ceramic fuel particles in a fluidized bed were systematically investigated. The carbon was formed by thermally decomposing methane on 200-µm-diam uranium carbide particles. Variables considered were deposition temperature, between 1300 and 2000°C, and methane flow rate, between 0.0167 and 2.53 cm3 / (min cm2). It was shown that these variables strongly influence microstructure, density, crystallite size, and preferred orientation of the pyrolytic-carbon coatings. The results are presented as contour maps for property dependence and as a montage of photomicrographs for microstructure dependence. The microhardness of coatings deposited at 1400°C increased with methane flow rate by a factor .of 3 over the range of flow rates employed.