ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
William T. Sha
Nuclear Technology | Volume 1 | Number 6 | December 1965 | Pages 538-545
Technical Paper | doi.org/10.13182/NT65-A20580
Articles are hosted by Taylor and Francis Online.
The effective resonance temperature (Teff) correlation of UO2 pellets based on experimental power coefficient data from PWR cores, namely, YANKEE, SAXTON, BR-3, and SELNI, is presented. The correlation can predict the total power defect of reactivity from hot zero power to full power within experimental uncertainties and Teff at any power level within ± 80°F (± 45°C), a magnitude which constitutes no more than ± 6% of the value at full power for current PWR design. With the ± 80°F uncertainty in Teff, the magnitude of the power coefficient of reactivity can vary as much as ± 30% in the low power region and ± 20% in the high power region. This study indicates the temperature drop in the gap between the pellet and clad is much lower than the value calculated for it in the past.