A fluid-bed volatility process, developed for the recovery of uranium from highly enriched uranium-zirconium and uranium-aluminum alloy fuels, involves separating the alloying material as a volatile chloride by reaction with hydrogen chloride and recovering the uranium as its volatile hexafluoride by reaction with fluorine. These highly exothermic reactions are conducted in a fluidized bed of alumina, which serves as a heat transfer medium. Process development work conducted in a 3.8-cm (1½-in.) diam nickel fluid-bed reactor with aluminum and zirconium alloys of normal uranium showed that recovery of >99% of the uranium in the fuel can be achieved. High decontamination from fission products is expected on the basis of technology developed in previous studies. Considerable economic advantage of this process over current aqueous reprocessing schemes results from (a) small waste volumes produced, mostly in solid form, (b) considerable flexibility in process operating conditions, (c) fewer operations needed, and (d) the product form, uranium hexafluoride, which is readily amenable to isotope separation or conversion for reuse as fuel.