ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
W. L. Pearl, E. G. Brush, G. G. Gaul, G. P. Wozadlo
Nuclear Technology | Volume 1 | Number 3 | June 1965 | Pages 235-245
Technical Paper | doi.org/10.13182/NT65-A20508
Articles are hosted by Taylor and Francis Online.
Incoloy-800® fuel-cladding material has been corrosion-tested under heat-transfer conditions at metal temperatures up to 1410° F (766° C) in specially designed out-of-pile superheat facilities. The hydrogen and oxygen contents of the steam were controlled to simulate those found in boiling-water-reactor systems. The corrosion data from the 4000-h heat-transfer tests indicated good corrosion resistance up to at least 1300° F (704° C) metal temperature. A compositionally changed layer developed at the metal-oxide interface. The changed layer depth appeared to be a function of time and temperature of exposure. The descaled weight-loss data for the sheaths operated at a metal temperature of 1100 to 1300° F (593 to 704° C) indicate that greater than 80% of the oxide corrosion product adhered during the first 1000-h exposure, but only about 50% of the total oxidation product remained after 4000 h. The uniform corrosion experienced by the Incoloy-800® when exposed isothermally to 1050 and 1150° F (566 and 621° C) for 10 000h indicates an initially high-corrosion rate that decreases to a lower constant rate within the first 1000 h. An insignificant amount of the oxide was lost to the system.