ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Calvin C. Silverstein
Nuclear Technology | Volume 1 | Number 2 | April 1965 | Pages 145-150
Technical Paper | doi.org/10.13182/NT65-A20481
Articles are hosted by Taylor and Francis Online.
A thermodynamic engine which converts heat generated by a radioisotope into mechanical energy pulses is described. The mechanical energy pulses are produced by first heating a curved bimetallic disk to a temperature at which it becomes unstable and reverses curvature and then by cooling the disk to a temperature where it again becomes unstable and assumes its original curvature. The initial disk curvature is determined by the operating temperature limits desired and physical properties of the disk components. An approximate theoretical analysis of engine performance has been carried out. For a mean disk temperature of 434° F (223° C), a maximum engine temperature of 750° F (399° C), a minimum engine temperature of 68° F (20° C), and a disk temperature change of 50° F (28° C), an ideal output of 10 W-s/cycle appears attainable from an engine with the following characteristics: disk thickness 0.075 in. (1.91 mm), disk diameter 3.5 in. (8.9 cm), radioisotope thermal power 150 W, and cycle time 11 s.