ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Calvin C. Silverstein
Nuclear Technology | Volume 1 | Number 2 | April 1965 | Pages 145-150
Technical Paper | doi.org/10.13182/NT65-A20481
Articles are hosted by Taylor and Francis Online.
A thermodynamic engine which converts heat generated by a radioisotope into mechanical energy pulses is described. The mechanical energy pulses are produced by first heating a curved bimetallic disk to a temperature at which it becomes unstable and reverses curvature and then by cooling the disk to a temperature where it again becomes unstable and assumes its original curvature. The initial disk curvature is determined by the operating temperature limits desired and physical properties of the disk components. An approximate theoretical analysis of engine performance has been carried out. For a mean disk temperature of 434° F (223° C), a maximum engine temperature of 750° F (399° C), a minimum engine temperature of 68° F (20° C), and a disk temperature change of 50° F (28° C), an ideal output of 10 W-s/cycle appears attainable from an engine with the following characteristics: disk thickness 0.075 in. (1.91 mm), disk diameter 3.5 in. (8.9 cm), radioisotope thermal power 150 W, and cycle time 11 s.