ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Robert J. Teitel, John B. Brown
Nuclear Technology | Volume 1 | Number 1 | February 1965 | Pages 13-24
Technical Paper | doi.org/10.13182/NT65-A20459
Articles are hosted by Taylor and Francis Online.
The Liquid Metal Breeder (LIMB) reactor is an internally-cooled fluid fuel reactor based upon a Th232-U233 thermal breeder cycle. It employs a molten lead coolant, a uranium-bismuth solution fuel, a thorium bismuthide dispersion in lead-bismuth blanket fluid and a graphite moderator. Heat from the fuel is transferred through a graphite fuel element to the coolant which transports the heat to an external boiler and pump. This arrangement overcomes the major disadvantages found in previous “externally-cooled” liquid-metal-fuel reactors. Equilibrium concentrations of uranium isotopes heavier than U233 and other reasonable assumptions were derived from existing information and then used to develop a broad survey of LIMB reactor sizes. Two sizes, 200 and 1000 MW(th), were chosen for more detailed evaluation. The 200 MW(th) has a potential breeding ratio of 1.08 and an 8 year doubling time. The 1000 MW(th) reactor has a breeding ratio of 1.05 and a 12 year doubling time. Using the most pessimistic estimates on processing could reduce the breeding ratio, while improvements in design and the utilization of low-cross-section coolants can counteract these losses. LIMB reactor technology can lead to an efficient breeder, even in large power sources, and warrants further engineering evaluations.