ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Alexander Glaser, Laura Berzak Hopkins, M. V. Ramana
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 121-129
Technical Paper | Proliferation Issues/Nuclear Safeguards | doi.org/10.13182/NT13-A19873
Articles are hosted by Taylor and Francis Online.
Small modular reactors (SMRs) with power levels much smaller than the currently standard 1000- to 1600-MW(electric) reactor designs have been proposed as a potential game changer for the future of nuclear power. We explore the contours of an expanded nuclear power generation capacity and the associated fuel cycles. To lay out a possible geographical distribution of nuclear capacity, we use results from an integrated assessment model used in energy and climate policy analysis. A wide variety of SMR designs with distinct characteristics are under development. To explore the impacts of these different designs, we have developed notional models for two leading SMR types and analyzed their resource requirements using results from neutronics calculations. Finally, we offer an initial assessment of the proliferation risks associated with these notional SMR designs compared to standard light water reactors (LWRs) using a Markov model. The analysis indicates that SMRs based on LWR technology (integral pressurized water reactors) have higher resource requirements as compared to gigawatt-scale reactors, while SMRs with long-lived cores have much lower resource requirements but a higher fissile content in the spent fuel they generate. These characteristics translate into increased proliferation risks unless they are offset by reactor design features or dedicated safeguards approaches.