ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Alexander Glaser, Laura Berzak Hopkins, M. V. Ramana
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 121-129
Technical Paper | Proliferation Issues/Nuclear Safeguards | doi.org/10.13182/NT13-A19873
Articles are hosted by Taylor and Francis Online.
Small modular reactors (SMRs) with power levels much smaller than the currently standard 1000- to 1600-MW(electric) reactor designs have been proposed as a potential game changer for the future of nuclear power. We explore the contours of an expanded nuclear power generation capacity and the associated fuel cycles. To lay out a possible geographical distribution of nuclear capacity, we use results from an integrated assessment model used in energy and climate policy analysis. A wide variety of SMR designs with distinct characteristics are under development. To explore the impacts of these different designs, we have developed notional models for two leading SMR types and analyzed their resource requirements using results from neutronics calculations. Finally, we offer an initial assessment of the proliferation risks associated with these notional SMR designs compared to standard light water reactors (LWRs) using a Markov model. The analysis indicates that SMRs based on LWR technology (integral pressurized water reactors) have higher resource requirements as compared to gigawatt-scale reactors, while SMRs with long-lived cores have much lower resource requirements but a higher fissile content in the spent fuel they generate. These characteristics translate into increased proliferation risks unless they are offset by reactor design features or dedicated safeguards approaches.