ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Masatoshi Iizuka, Kensuke Kinoshita, Yoshiharu Sakamura, Takanari Ogata, Tadafumi Koyama
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 107-120
Technical Paper | Pyrometallurgical Reprocessing | doi.org/10.13182/NT13-A19872
Articles are hosted by Taylor and Francis Online.
Fuel cycle tests using uranium and simulants with process equipment of 1 ton HM/yr throughput were conducted to develop an equipment design for long-term and hot-cell operation with stable performance, and to investigate the influence of impurities on the behavior of sensitive materials such as molten chlorides and active metals on material mass balance during repeated engineering-scale operations. These cycle tests were performed in two phases. The first phase simulated the introduction of spent oxide fuel into the metallic fuel cycle by the sequential operations of the UO2 electroreduction, electrorefining of the reduction product, salt distillation using the electrorefining product, and injection casting of U-Zr alloy using the recovered uranium metal. The second phase, consisting of electrorefining, salt distillation, and injection casting, simulated the repeated metallic fuel cycle. The major achievements and results in these cycle tests are summarized as follows:1. Simulated metallic fuel (U-Zr alloy rods) was successfully fabricated using UO2 as the starting material.2. The electrorefining, product transfer, salt distillation, and injection casting equipment operated satisfactorily, and their performance was sufficiently high, taking the target processing rate of 5 kg/day into account.3. Regarding electroreduction, the reduction rate was approximately half the target value, and the cathodic current efficiency was also low. The reasons for the unsatisfactory result are considered to be Li2O stagnancy at the cathode, the parasitic generation of lithium and the subsequent oxidation out of the cathode, and possibly the reaction between the reduced uranium and the oxygen gas evolved at the anode. Improvement of equipment design should be continued to moderate the influence of these factors on the electroreduction performance.4. Favorable material mass balance of uranium, zirconium, and ruthenium (simulated fission products) was kept during the cycle tests, including the electrorefining, product transfer, salt distillation, and injection casting steps. No influence of three-time repetition of the fuel cycle tests was found from this viewpoint. The representativity of the anode residue and cathode product samples from the electrorefining step, which strongly influences the material mass balance evaluation, would be improved by performing anode residue treatment including metal waste consolidation and cathode processing for all the cathode products.