ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Scott Holcombe, Staffan Jacobsson Svärd, Knut Eitrheim, Lars Hallstadius, Christofer Willman
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 96-106
Technical Paper | Source Term Assessment / Techniques for Measurements of Nuclear Data / Nondestructive Examination/Testing Methods | doi.org/10.13182/NT13-A19871
Articles are hosted by Taylor and Francis Online.
Fission gases are produced as a result of fission reactions in nuclear fuel. Most of these gases remain trapped within the fuel pellets, but some may be released to the fuel rod internal gas volume under certain conditions. This phenomenon of fission gas release is important for fuel performance since the released gases can degrade the thermal properties of the fuel rod fill gas and contribute to increasing fuel rod internal pressure.Various destructive and nondestructive methods are available for determining the amount of fission gas release; however, the current methods are primarily useful for determining the integrated fission gas release fraction, i.e., the amount of fission gas produced in the fuel that has been released to the free rod volume over the entire lifetime of a nuclear fuel rod.In this work, a method is proposed for determining the fission gas release that occurs during short irradiation sequences. The proposed method is based on spectroscopic measurements of gamma rays emitted in the decay of short-lived fission gas isotopes. Determining such sequence-specific fission gas release can be of interest when evaluating the fuel behavior for selected times during irradiation, such as during power ramps. The data obtained in this type of measurement may also be useful for investigating the mechanisms behind fission gas release for fuel at high burnup.The method is demonstrated based on the analysis of experimental gamma-ray spectra previously collected using equipment not dedicated for this purpose; however, the analysis indicates the feasibility of the method. Further evaluation of the method is planned, using dedicated equipment at the Halden Boiling Water Reactor.