ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Scott Holcombe, Staffan Jacobsson Svärd, Knut Eitrheim, Lars Hallstadius, Christofer Willman
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 96-106
Technical Paper | Source Term Assessment / Techniques for Measurements of Nuclear Data / Nondestructive Examination/Testing Methods | doi.org/10.13182/NT13-A19871
Articles are hosted by Taylor and Francis Online.
Fission gases are produced as a result of fission reactions in nuclear fuel. Most of these gases remain trapped within the fuel pellets, but some may be released to the fuel rod internal gas volume under certain conditions. This phenomenon of fission gas release is important for fuel performance since the released gases can degrade the thermal properties of the fuel rod fill gas and contribute to increasing fuel rod internal pressure.Various destructive and nondestructive methods are available for determining the amount of fission gas release; however, the current methods are primarily useful for determining the integrated fission gas release fraction, i.e., the amount of fission gas produced in the fuel that has been released to the free rod volume over the entire lifetime of a nuclear fuel rod.In this work, a method is proposed for determining the fission gas release that occurs during short irradiation sequences. The proposed method is based on spectroscopic measurements of gamma rays emitted in the decay of short-lived fission gas isotopes. Determining such sequence-specific fission gas release can be of interest when evaluating the fuel behavior for selected times during irradiation, such as during power ramps. The data obtained in this type of measurement may also be useful for investigating the mechanisms behind fission gas release for fuel at high burnup.The method is demonstrated based on the analysis of experimental gamma-ray spectra previously collected using equipment not dedicated for this purpose; however, the analysis indicates the feasibility of the method. Further evaluation of the method is planned, using dedicated equipment at the Halden Boiling Water Reactor.