ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
John F. Palsmeier, Sudarshan K. Loyalka
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 78-95
Technical Paper | Source Term Assessment | doi.org/10.13182/NT184-78
Articles are hosted by Taylor and Francis Online.
The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both measurements and modeling for quantifying this role. We focus here on simulations of charged-aerosol evolution considering coagulation alone. We have used the direct simulation Monte Carlo technique and benchmarked it by comparing the results for monodisperse aerosols as obtained by deterministic techniques where the particles are charged but are assumed to remain monodisperse even after coagulation. We then further explore simulations of polydisperse and charged aerosols and compare the results with those obtained when the charge effects are ignored. We find that charge effects can be significant.