ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ling Zou, Hongbin Zhang, Jess Gehin, Brendan Kochunas
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 535-542
Technical Paper | Fission Reactors / Thermal Hydraulics | doi.org/10.13182/NT13-A19440
Articles are hosted by Taylor and Francis Online.
A thermal-hydraulics (TH)/neutronics/crud multiphysics coupling framework to simulate the crud deposits' impact on crud-induced power shift (CIPS) phenomenon is proposed in this paper. The coupling among three essential physics (i.e., TH, crud, and neutronics) was implemented by coupling the computational fluid dynamics software STAR-CCM+, a newly developed crud module, and the neutronics code DeCART. A typical 3 × 3 pressurized water reactor fuel pin problem was analyzed with this framework and simulation results are presented. Time-dependent results are provided for a 12-month simulation. Simulation results provide the history of crud deposits inventory and their distributions on fuel rods, boron hideout amount inside crud deposits, and power shape changing over time. The obtained results clearly showed the power shape suppression in regions where crud deposits exist, a clear indication of CIPS phenomenon.