ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kun Mo, Hsiao-Ming Tung, Xiang Chen, Yang Zhao, Jon Hansen, James F. Stubbins
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 455-463
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT13-A19433
Articles are hosted by Taylor and Francis Online.
Both Alloy 617 and Alloy 230 have been considered the most promising structural materials for the Very High Temperature Reactor (VHTR). In this study, mechanical properties of both alloys were examined by performing tensile tests at three different strain rates and at temperatures up to 1000°C. This range covers time-dependent (plasticity) to time-independent (creep) deformations. Strain-rate sensitivity analysis for each alloy was conducted in order to approximate the long-term flow stresses. The strain-rate sensitivities for the 0.2% flow stress were found to be temperature independent (m [approximate] 0) at temperatures ranging from room temperature to 700°C due to dynamic strain aging. At elevated temperatures (800°C to 1000°C), the strain-rate sensitivity significantly increased (m > 0.1). Compared to Alloy 617, Alloy 230 displayed higher strain-rate sensitivities at high temperatures. This leads to lower estimated long-term flow stresses. Results of this analysis were used to evaluate the current American Society of Mechanical Engineers (ASME) allowable design limits for each alloy. The study showed that the allowable design stresses in the ASME Boiler and Pressure Vessel Code for either alloy do not provide adequate long-term degradation estimation. Nevertheless, rupture stresses for Alloy 617, developed in the ASME code case N-47-28, can generally satisfy the safety margins at 800°C and 1000°C estimated in the study following the strain-rate sensitivity analysis. Furthermore, additional material development studies might be required, since the design parameters for rupture stresses are constrained such that the current VHTR conceptual designs cannot satisfy the material limits.