ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
E. F. Mitenkova, N. V. Novikov, A. I. Blokhin
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 446-454
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A19432
Articles are hosted by Taylor and Francis Online.
Different uranium-plutonium fuel compositions are considered for sodium fast reactors of the next generation. Considerable discrepancies in axial and radial neutron spectra for hybrid reactor systems compared to uranium oxide fuel cores increase uncertainties in the key calculated neutronic characteristics of hybrid systems. The calculation results of a BFS-62-3A critical assembly considered as a full-scale model of BN-600 hybrid core with steel reflector specify quite different spectra in local areas. In such systems the MCNP5 calculations demonstrate a noticeable sensitivity of the key neutronic characteristics (effective multiplication factor keff, spectral indices) to nuclear data libraries and extra steel such as dowels placed in the core. Uncertainties in the location of stainless steel dowels and in their quantity cause uncertainties in the fuel-to-steel mass ratio in the core. For 235U, 238U, and 239Pu, the calculated radial fission rate distributions against the reconstructed ones are analyzed. A comparative analysis of spectral indices, neutron spectra, and radial fission rate distributions is performed using nuclear data libraries generated from ENDF/B-VII.0, JEFF-3.1.1, JENDL-3.3, and BROND-3 for Fe and Cr isotopes. When performing analysis of the fission-rate sensitivity to the presence of plutonium in fuel, 239Pu is replaced by 235U in local areas containing plutonium. For radial fission rate distributions, peak discrepancies may be due to possible underestimation of some features of experimental data processing and reconstruction methods (Westcott factors, temperature dependence, local core features). A more-sophisticated impact analysis of spatially different neutron spectra on neutron characteristics of the core is also required. To confirm the results of BFS-62-3A analysis, radial fission-rate distributions are calculated for BFS-62-4 with UO2 blanket instead of steel reflector.