ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Martin Knight, Paul Bryce, Sheldon Hall
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 398-408
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A19428
Articles are hosted by Taylor and Francis Online.
This paper describes a method of analyzing pressurized water reactor UO2/mixed oxide (MOX) cores with the lattice code WIMS and the reactor code PANTHER. "Embedded supercells," run within the reactor code, are used to correct the standard methodology of using two-group smeared data from single-assembly (SA) lattice calculations. In many other codes the weakness of this standard approach has been improved for MOX by imposing a more realistic environment in the lattice code or by improving the sophistication of the reactor code. In this approach an intermediate set of calculations is introduced, leaving both lattice and reactor calculations broadly unchanged.The essence of the approach is that the whole core is broken down into a set of embedded supercells, each extending over just four quarter assemblies, with zero leakage imposed at the assembly midlines. Each supercell is solved twice, first with a detailed multigroup pin-by-pin solution and then with the standard SA approach. Correction factors are defined by comparing the two solutions, and these can be applied in whole-core calculations.The restriction that all such calculations be modeled with zero leakage means that they are independent of each other and of the core-wide flux shape. This allows parallel precalculation for the entire cycle once the loading pattern has been determined, in much the same way that SA lattice calculations can be precalculated once the range of fuel types is known.Comparisons against a whole-core pin-by-pin reference demonstrates that the embedding process does not introduce a significant error, even after burnup and refueling. Comparisons against a WIMS reference demonstrate that a pin-by-pin multigroup diffusion solution is capable of capturing the main interface effects.This therefore defines a practical approach for achieving results close to lattice code accuracy but broadly at the cost of a standard reactor calculation.