ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Benjamin R. Hanna, Daniel F. Gill, David P. Griesheimer
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 367-378
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A19425
Articles are hosted by Taylor and Francis Online.
An integrated thermal-hydraulic feedback module has previously been developed for the Monte Carlo transport solver MC21. The module incorporates a flexible input format that allows the user to describe heat transfer and coolant flow paths within the geometric model at any level of spatial detail desired. The effect that the varying levels of spatial homogenization of thermal regions has on the accuracy of the Monte Carlo simulations is examined in this study. Six thermal feedback mappings are constructed from the same geometric model of the Calvert Cliffs core. The spatial homogenization of the thermal regions is varied, giving each scheme a different level of detail, and the adequacy of the spatial homogenization is determined based on the eigenvalue produced by each Monte Carlo calculation. The purpose of these numerical experiments is to determine the level of detail necessary to accurately capture the thermal feedback effect on reactivity. Several different core models are considered: axial flow only, axial and lateral flow, asymmetry due to control rod insertion, and fuel heating (temperature-dependent cross sections). The thermal results generated by the MC21 thermal feedback module are consistent with expectations. Based on the numerical experiments conducted, it is concluded that the amount of spatial detail necessary to accurately capture the feedback effect on reactivity is relatively small. Homogenization at the assembly level for the Calvert Cliffs pressurized water reactor model results in a power defect similar to that calculated with individual pin cells modeled as explicit thermal regions.