ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
R. A. Lillie, R. G. Alsmiller, Jr., J. T. Mihalczo
Nuclear Technology | Volume 43 | Number 3 | May 1979 | Pages 373-381
Technical Paper | Accelerator | doi.org/10.13182/NT79-A19225
Articles are hosted by Taylor and Francis Online.
A number of Type 316 stainless-steel right circular cylindrical shells of varying lengths have been analyzed using two-dimensional discrete-ordinates transport methods together with first- and last-flight particle estimators to aid in the design of neutron collimators for the Tokamak Fusion Test Reactor (TFTR). In the TFTR, the 14-MeV neutron source has a very large spatial extent, and the collimators must be designed to allow spectral measurements that refer to only a small spatial region of this extended source. The analysis identifies the 14-MeV neutrons from scattering in the Type 316 stainless steel immediately adjacent to the collimator opening as the dominant contributor to detector background. Collimator lengths >0.60 m were found sufficient to attenuate uncollided background neutrons for reasonable source-detector distances. The lower energy (<13.8 MeV) neutron background and gamma background were not found to be significant.