ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Steven J. Stanley, Kat Lennox, Alex Jenkins
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 260-269
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-141
Articles are hosted by Taylor and Francis Online.
The RadBall is a 140-mm (5.5-in.)-diam deployable, passive, nonelectrical gamma hot-spot imaging device that offers a 360-deg view of the deployment area. The device is particularly useful in instances where the radiation fields inside a nuclear facility are unknown, but a suitable decommissioning strategy is required to be planned. The original version of the technology had a number of drawbacks including a relative insensitivity to radiation (at least 3 Gy required), which led to long deployment times, as well as a narrow target dose range (3 to 8 Gy), which meant that the user required prior knowledge of the radiation fields in which the device was to be deployed. The United Kingdom's National Nuclear Laboratory has developed the technology to overcome both of these issues. The developments associated with the new technology are described here, as are some recent tests undertaken at the Sellafield facility in the United Kingdom. The work has resulted in a significant improvement in sensitivity - 150 times - as well as greatly widened the target dose range to between 20 mGy and 50 Gy. The new version of the technology therefore has a much-improved applicability compared to the original technology.