ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
L. A. Aguiar, P. F. Frutuoso e Melo, A. C. M. Alvim
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 228-247
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-A18113
Articles are hosted by Taylor and Francis Online.
This paper aims to determine, for the period of institutional control (300 yr), the probability of occurrence of the net release scenario of radioactive waste from a near-surface repository. The radioactive waste focused on in this work is that of low and medium activity generated by a pressurized water reactor plant. The repository is divided into eight modules, each of which consists of six barriers (top cover, upper layer, packages, base, walls, and geosphere). The repository is a system where the modules work in series and the module barriers work in active parallel. The module failure probability for radioactive elements is obtained from a Markov model because of shared loads assumed for the different barriers. Lack of field failure data led to the necessity of performing sensitivity analyses to assess the failure rate impact on module and barrier failure probabilities. Module failure probabilities have been found to be lower for those radioactive elements with higher retardation coefficients. The geosphere mean time to failure is the most important parameter for calculating module failure probabilities for each radioactive element. The repository module has presented higher failure probabilities for iodine, technetium, and strontium. For iodine, the estimated probability is 16% for 300 yr and 96% for 1000 yr. The basis for performance evaluation of the deposition system is the understanding of its gradual evolution. There are many uncertainty sources in this modeling, and efforts in this direction are strongly recommended.