ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hiroaki Suzuki, Shunsuke Uchida, Masanori Naitoh, Hidetoshi Okada, Soji Koikari, Kunio Hasegawa, Fumio Kojima, Seiichi Koshizuka, Derek H. Lister
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 194-209
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A18111
Articles are hosted by Taylor and Francis Online.
The possibility of thousands of flow-accelerated-corrosion (FAC) zones causes long and costly inspection procedures for nuclear, as well as fossil-fuel power plants, even if the number of zones is minimized on the basis of temperature and flow velocity. In order to decrease the number of inspection zones, suitable prediction or estimation procedures for FAC occurrence should be applied, and the resulting computer programs should be tuned with as many inspection data as possible. Such coupling of the estimation and inspection procedures should allow effective and reliable preparation to be made against FAC occurrence and propagation.This paper defines the FAC risk as the mathematical product of the possibility of the occurrence of wall thinning and its hazard scale. The possibility of the occurrence of wall thinning was designated as the time margin for pipe rupture determined by applying a one-dimensional FAC code, which could predict the wall-thinning rate with an accuracy within a factor of 2, while the hazard scale was defined as the volume of effluent steam and water from the ruptured mouth, which was enthalpy of water originally flowing in the pipe multiplied by the square of the pipe inner diameter. High FAC risk zones along entire cooling systems could be evaluated in only one-tenth or one-hundredth of the computer time as for a three-dimensional FAC code to determine the priority for inspection-order importance.