ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masatoshi Yamasaki, Hironobu Unesaki, Akio Yamamoto, Toshikazu Takeda, Masaaki Mori
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 178-193
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A18110
Articles are hosted by Taylor and Francis Online.
The use of high-enrichment fuels, e.g., fuels with >5 wt% 235U, is an effective method of reducing the number of spent-fuel assemblies and improving fuel cycle economics. However, from a criticality safety point of view, such high enrichment levels would entail considerable modification of most facilities and equipment, which would require a significant investment. Erbia-credit super-high-burnup fuel offers the potential for an effective solution to this problem. The fuel is based on the concept that small amounts of erbia added to the entire amount of UO2 powder can reduce the reactivity level to less than that observed at a 5 wt% enrichment level, thus eliminating the majority of the modifications mentioned above. In this paper, a feasibility assessment from the viewpoint of fuel cycle economics is performed to confirm the benefits of erbia-credit-fuel implementation. A simple model to consider the erbia penalty is also proposed. The results show that the generation cost can be significantly reduced by using erbia credit, although the fuel cycle cost would not necessarily decrease in any of the cases when the enrichment level is increased. In addition, implementation scenarios of erbia credit are discussed considering the current industrial situation and the reactivity penalty incurred by the usage of erbia fuel. These implementation scenarios are also considered from the viewpoint of energy security.