ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. Allard, G. W. Beall, T. Krajewski+
Nuclear Technology | Volume 49 | Number 3 | August 1980 | Pages 474-480
Technical Paper | Radioactive Waste | doi.org/10.13182/NT80-A17695
Articles are hosted by Taylor and Francis Online.
The sorption of americium(III) and neptunium(V) on some major minerals of igneous rocks (quartz, microcline, albite, bytownite, biotite, hornblende, augite, olivine, and kaolinite) and on two granites has been studied, the aqueous phase being on artificial groundwater and with pH varying from four to nine. The sorption was measured on crushed solids (0.044 to 0.063 mm) at ambient temperature by a batch technique, using 241 Am (2 × 10−9M) and 235Np (2 × 10−11 M). For both americium and neptunium, sorption isotherms were obtained that seem to be related to the formation of hydrolyzed species of the elements in the aqueous phase, giving an increased sorption with an increase of the degree of hydrolysis (starting at pH 5 for americium and at pH 8 for neptunium). The sorption on the individual minerals seems to be qualitatively related to their specific surfaces (and cation exchange capacities), but the differences between high-sorbing biotite and low-sorbing quartz were not more than one order of magnitude (in terms of distribution coefficients) in the studied pH range. Distribution coefficients for the granites were equal to the weighted average values of the distribution coefficients for the individual minerals within a factor of three.