ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
W. A. Woolson, M. L. Gritzner
Nuclear Technology | Volume 49 | Number 3 | August 1980 | Pages 410-425
Technical Paper | Fuel Cycle | doi.org/10.13182/NT80-A17689
Articles are hosted by Taylor and Francis Online.
The response of neutron logging tools used for uranium exploration to variations in tool design, borehole parameters, and rock matrix properties has been studied using discrete ordinates and Monte Carlo radiation transport methods. The logging techniques that have been analyzed include the measurement of signal radiation due to delayed fission neutrons and prompt fission neutrons generated in uranium ore by pulsed 14-MeV and iso topic 252Cf neutron sources. The effect of variations in the following parameters has been studied: source-detector separation, tool casing, borehole diameter, mudcake thickness, mud filtrate invasion, tool eccentricity, borehole casing, rock matrix composition, matrix moisture content, formation water composition, neutron poisons, thin ore beds, ore bed dipping angle, and ore grade. “Noise” radiation from fast fission in thorium ore and delayed oxygen neutrons has also been computed and compared to the signal radiation as a function of uranium and thorium ore grades, borehole size, and rock moisture concentration. Evaluation models have been produced to aid in calibration of the logging tools for uranium assay.