ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
F. S. Gunnerson, A. W. Cronenberg
Nuclear Technology | Volume 49 | Number 3 | August 1980 | Pages 380-391
Technical Paper | Reactor | doi.org/10.13182/NT49-380
Articles are hosted by Taylor and Francis Online.
An initial period of film boiling has been identified as a key element in the chain of events leading to a large-scale vapor explosion. From theoretical considerations, the conditions required for molten UO2 particles (assumed spherical) to undergo film boiling in water and sodium coolants are assessed. Results indicate that under most conditions when UO2 droplets are quenched in water or sodium, film boiling is expected, indicating that such systems could satisfy the initial coarse mixture requirement for explosive vaporization. In addition, it is shown that experimental vapor explosion results that have been interpreted in terms of spontaneous nucleation theory may likewise be viewed in terms of film boiling destablization.