ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Duke Energy submits an ESP application to the NRC
Following up on an October announcement on plans to invest more heavily in nuclear power, Duke Energy closed out 2025 by submitting an early site permit application to the Nuclear Regulatory Commission. This ESP application is for a site near the Belews Creek Steam Station, a coal and natural gas plant in Stokes County, N.C., where Duke has been pursuing a new nuclear project for two years.
Sümer Şahin, Jacques Ligou
Nuclear Technology | Volume 50 | Number 1 | August 1980 | Pages 88-94
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT80-A17072
Articles are hosted by Taylor and Francis Online.
Assuming the spontaneous fission neutron level as a neutron source, and using point kinetic methods in the course of the analytical treatment, the energy excursion of hypothetical nuclear explosives with mixed plutonium of various isotope compositions has been investigated. The α-Rossi values for the metallic density of different configurations have been evaluated with multigroup SN methods. Commercial plutonium from relatively low burned-up nuclear fuel, containing 5% 240Pu, is shown to reveal similarities with high weapons-grade plutonium, thus making possible a nuclear explosion (in combination with a sophisticated conventional implosion technique). On the other hand, commercial plutonium from moderately to highly burned up (containing 15 or 25% 240Pu nuclear fuel) will have a small probability for an energy excursion up to 100 tons TNT, even by extremely improved implosion techniques.