ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Sümer Şahin, Jacques Ligou
Nuclear Technology | Volume 50 | Number 1 | August 1980 | Pages 88-94
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT80-A17072
Articles are hosted by Taylor and Francis Online.
Assuming the spontaneous fission neutron level as a neutron source, and using point kinetic methods in the course of the analytical treatment, the energy excursion of hypothetical nuclear explosives with mixed plutonium of various isotope compositions has been investigated. The α-Rossi values for the metallic density of different configurations have been evaluated with multigroup SN methods. Commercial plutonium from relatively low burned-up nuclear fuel, containing 5% 240Pu, is shown to reveal similarities with high weapons-grade plutonium, thus making possible a nuclear explosion (in combination with a sophisticated conventional implosion technique). On the other hand, commercial plutonium from moderately to highly burned up (containing 15 or 25% 240Pu nuclear fuel) will have a small probability for an energy excursion up to 100 tons TNT, even by extremely improved implosion techniques.