ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jungchung Jung
Nuclear Technology | Volume 50 | Number 1 | August 1980 | Pages 60-82
Technical Paper | Fuel | doi.org/10.13182/NT80-A17070
Articles are hosted by Taylor and Francis Online.
A nuclear analysis of tritium breeding performance has been carried out for three candidate breeding materials of liquid lithium, solid Li2O, and solid Li7Pb2. Blanket coolants studied include helium gas, liquid lithium, and water. It is found that the Li7Pb2 compound gives slightly higher breeding ratios than liquid lithium and significantly higher rates than does Li2O. The Li2O blankets reach their full breeding capability at smaller thicknesses due to moderation of the neutron spectrum by the oxygen. Due to this moderation inherent to the use of Li2O, the incorporation of a carbon reflector does not improve the performance of the blanket nearly as much as it does the performance of the Li7Pb2 and lithium blankets. In all of the cases investigated, it has turned out a thin beryllium zone separating the first wall from the breeding blanket substantially enhances the tritium production. Very little incentive for enriching any of the breeders with 6Li is found under conditions both with and without beryllium neutron multiplier. Calculations for water-cooled systems indicate a possible improvement in breeding performance over that obtained with helium, particularly for Li7Pb2 systems.