ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Robert E. Einziger, Bobby R. Seidel
Nuclear Technology | Volume 50 | Number 1 | August 1980 | Pages 25-39
Technical Paper | Fuel | doi.org/10.13182/NT80-A17067
Articles are hosted by Taylor and Francis Online.
The Experimental Breeder Reactor II Mark-II metallic-driver-fuel element has been irradiated to high burnup to assess element lifetime and performance reliability. The elements breached at 10 at.% burnup or greater. This increase in burnup potential compared to its predecessor, the Mark-IA (limited to a burnup of 3 at.%), is due to the reduction of fuel-cladding mechanical interaction (FCMI) resulting from the smaller smear density, a lower fission-gas-induced cladding stress resulting from the increased plenum volume and increased cladding thickness, and a reduction in fuel-cladding chemical interaction (FCCI) due to a change in cladding material. The cladding breach in the solution-annealed Type 316 stainless-steel-clad elements was in the restrainer dimple located above the original fuel column, not in the upper half of the fuel column as in the Type 304L stainless-steel-clad elements. During irradiation, the prime cause of cladding deformation was swelling. Due to the extensive release of fission gas after interconnected porosity developed, the fuel deformation was restricted by the cladding. After fuel-cladding contact, a small amount of FCCI, as predicted by out-of-pile measurements, occurred, but little FCMI is thought to have taken place.