ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert E. Einziger, Bobby R. Seidel
Nuclear Technology | Volume 50 | Number 1 | August 1980 | Pages 25-39
Technical Paper | Fuel | doi.org/10.13182/NT80-A17067
Articles are hosted by Taylor and Francis Online.
The Experimental Breeder Reactor II Mark-II metallic-driver-fuel element has been irradiated to high burnup to assess element lifetime and performance reliability. The elements breached at 10 at.% burnup or greater. This increase in burnup potential compared to its predecessor, the Mark-IA (limited to a burnup of 3 at.%), is due to the reduction of fuel-cladding mechanical interaction (FCMI) resulting from the smaller smear density, a lower fission-gas-induced cladding stress resulting from the increased plenum volume and increased cladding thickness, and a reduction in fuel-cladding chemical interaction (FCCI) due to a change in cladding material. The cladding breach in the solution-annealed Type 316 stainless-steel-clad elements was in the restrainer dimple located above the original fuel column, not in the upper half of the fuel column as in the Type 304L stainless-steel-clad elements. During irradiation, the prime cause of cladding deformation was swelling. Due to the extensive release of fission gas after interconnected porosity developed, the fuel deformation was restricted by the cladding. After fuel-cladding contact, a small amount of FCCI, as predicted by out-of-pile measurements, occurred, but little FCMI is thought to have taken place.