ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Kazuo Shin, Yoshitomo Uwamino, Tomonori Hyodo
Nuclear Technology | Volume 53 | Number 1 | April 1981 | Pages 78-85
Technical Paper | Analyse | doi.org/10.13182/NT81-A17059
Articles are hosted by Taylor and Francis Online.
An analysis was made on the propagation of errors from the response functions to the unfolded spectrum in the unfolding process from a pulse height distribution to an energy spectrum. In the derivation of formulas, the terms of high variance were ignored. Assumed errors of the response functions were limited to statistical errors in Monte Carlo calculations for the response functions. The unfolding processes used were the SIMPLE method and the FERDO method. The test calculations were done assuming typical spectra having a sharp peak and the 252Cf fission spectrum. The response errors can have a serious influence on the flux error, especially in the case of a sharply peaked spectrum.