ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Frank H. Huang, William J. Mills
Nuclear Technology | Volume 102 | Number 3 | June 1993 | Pages 367-375
Technical Paper | Material | doi.org/10.13182/NT93-A17035
Articles are hosted by Taylor and Francis Online.
The mechanical properties of nuclear reactor components degrade as a result of long service exposure in high-temperature, irradiation, and corrosive environments. Fracture toughness and tensile testing are conducted on the pressure tubes of Zircaloy-2 to evaluate the effects of neutron fluence, hydrogen content, and temperature on the mechanical properties. Tensile tests are performed on the base metal, and fracture toughness tests are performed on both the base and weld metals. Neutron irradiation increases the strength, reduces ductility, and significantly degrades fracture toughness. The postirradiation fracture toughness increases substantially as the test temperature is increased from room temperature to 250°C. Hydrogen levels up to 250 ppm are found to have little or no effect on the postirradiation fracture toughness. Because of its anisotropic nature, Zircaloy-2 displays different fracture resistances, depending on crack orientation. In the base metal, the fracture toughness in the longitudinal orientation is higher than that for the circumferential orientation, and this difference is enhanced at higher temperatures. The weld exhibits lower toughness in the longitudinal direction.