ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Gunzo Uchiyama, Sachio Fujine, Shinobu Hotoku, Mitsuru Maeda
Nuclear Technology | Volume 102 | Number 3 | June 1993 | Pages 341-352
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT93-A17033
Articles are hosted by Taylor and Francis Online.
A new neptunium, plutonium, and uranium separation process using n- and iso-butyraldehydes as reductantsfor Np(VI) and Pu(IV), respectively, is described for nuclear fuel reprocessing. A kinetics study and a chemical flow sheet study are conducted to develop the selective separation process for neptunium, plutonium, and uranium. In the kinetics study, it is found that n-butyraldehyde reduces Np(VI) to Np(V) in the Purex solution but does not reduce Pu(IV) and U(VI), and iso-butyraldehyde reduces Np(VI) and Pu(IV) but does not reduce U(VI). Based on these results, a new process to separate neptunium, plutonium, and uranium selectively is proposed. The process consists mainly of three steps: the codecontamination step, the neptunium separation step [in which Np(VI) extracted by a solvent of 30% tri-n-butyl phosphate (TBP)/n-dodecane together with Pu(IV) and U(VI) is reduced to Np(V) by n-butyraldehyde and is back-extracted from the solvent], and the uranium/plutonium (U/Pu) partition step using iso-butyraldehyde as a Pu(IV) reductant. In the chemical flow sheet study, the effectiveness of the separation process is demonstrated by the use of miniature mixer-settlers. In the neptunium separation step, ∼99.98% of the neptunium extracted by the 30% TBP/n-dodecane solvent along with U(VI) in the uranium/neptunium coextraction step is reduced by n-butyraldehyde and separated from the uranium stream. In the U/Pu partition step, >99% of the plutonium is reduced by iso-butyraldehyde and separated from the uranium stream.