ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Tsutomu Hoshino
Nuclear Technology | Volume 39 | Number 1 | June 1978 | Pages 46-62
Nuclear Safety Analysis | Energy Modeling and Forecasting / Fuel Cycle | doi.org/10.13182/NT78-A17007
Articles are hosted by Taylor and Francis Online.
A planning tool for strategic operation of nuclear power plants has been presented with a wider view on the overall utility system management. The tool was flexible enough to be capable of checking the feasibility of the proposed alternative plans as well as optimizing the plans in terms of the minimization of system operating costs over several refueling cycles. The problem was defined in a small-scale utility system that consisted of a nuclear power plant and a replacement power station. The optimum decision was made on an in-core refueling pattern, its associated number of fuel assemblies, and the time length of coastdown operation. The optimization was subject to several physical and engineering constraints on reactor operation. Following the general decomposition approach, the method utilized iterative linear programming and a gradient projection algorithm of nonlinear programming. A typical pressurized water reactor was studied. The economic gain was obtained mainly by filling margins originally involved in the reactivity and burnup limitations as well as by optimum coastdown operations. The flexibility of the method was especially enhanced in a case of recovery planning after unexpected plant outages with subsequent forced power reductions.