ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Shunsuke Uchida, Satoshi Hanawa, Yutaka Nishiyama, Takehiko Nakamura, Tomonori Satoh, Takashi Tsukada, Jan Kysela
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 119-135
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT13-A16997
Articles are hosted by Taylor and Francis Online.
In-pile loop experiments are one of the key technologies that can provide an understanding of corrosion behaviors of structural materials in nuclear power plants (NPPs). The experiments should be supported not only by reliable measurement tools to confirm corrosive conditions under neutron and gamma-ray irradiations but also by theoretical models for extrapolating the measured data to predict corrosion behaviors in NPPs.The relationships among electrochemical corrosion potential (ECP), metal surface conditions, exposure time, and other environmental conditions have been determined from in situ measurements of corrosion behaviors of stainless steel specimens exposed to H2O2 and O2 in high-temperature water. Based on the relationships, a model to evaluate the ECP of stainless steel was developed by coupling an electrochemical model and a double-oxide layer model.Major conclusions obtained from the evaluation model are as follows: (a) The difference in ECP behaviors of the specimens exposed to H2O2 and O2 were mainly from the thickness and developing rate of the inner oxide layers. (b) Calculated ECP behaviors, e.g., the different responses to H2O2 and O2 and hysteresis and memory effects, agreed with the measured ones. (c) Neutron exposure might decrease ECP due to radiation-induced diffusion in the oxide layer.The ECP evaluation model will be applied to evaluation of corrosive conditions in the JMTR in-pile loop.