ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
EPA administrator Lee Zeldin talks the future of nuclear
In a recent interview on New York radio station 77 WABC, administrator of the Environmental Protection Agency Lee Zeldin talked with host John Catsimatidis about the near-term future of the domestic nuclear industry and the role the EPA will play in the sector.
Catsimatidis kicked off the interview by asking if the U.S. will be able to reach total energy independence. Zeldin responded by saying that decreasing energy dependence on other countries, especially adversaries, was a top priority for him and the Trump administration.
A. C. Morreale, M. R. Ball, D. R. Novog, J. C. Luxat
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 30-44
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A16990
Articles are hosted by Taylor and Francis Online.
The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation, and heat loads of spent material. The burning of transuranic (TRU) fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while significantly reducing the fast reactor infrastructure needed. This paper examines the features of actinide mixed-oxide (MOX) fuel, TRUMOX, in a CANDU® nuclear reactor. The actinide concentrations used were based on extraction from 30-year-cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, supercell calculations were analyzed in DRAGON, and full-core analysis was executed in the RFSP two-group diffusion code. A time-average full-core model was produced and analyzed for reactor coefficients, reactivity device worth, and online fueling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 29.91 MWd/kg heavy element and an actinide transmutation rate of 35% for a single pass. A fully TRUMOX-fueled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing, and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle.