ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. C. Morreale, M. R. Ball, D. R. Novog, J. C. Luxat
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 30-44
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A16990
Articles are hosted by Taylor and Francis Online.
The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation, and heat loads of spent material. The burning of transuranic (TRU) fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while significantly reducing the fast reactor infrastructure needed. This paper examines the features of actinide mixed-oxide (MOX) fuel, TRUMOX, in a CANDU® nuclear reactor. The actinide concentrations used were based on extraction from 30-year-cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, supercell calculations were analyzed in DRAGON, and full-core analysis was executed in the RFSP two-group diffusion code. A time-average full-core model was produced and analyzed for reactor coefficients, reactivity device worth, and online fueling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 29.91 MWd/kg heavy element and an actinide transmutation rate of 35% for a single pass. A fully TRUMOX-fueled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing, and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle.