ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Bo-Young Han, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 369-377
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT13-A16986
Articles are hosted by Taylor and Francis Online.
Pyrochemical processing (pyroprocessing) was developed to recover plutonium that is inherently comingled with minor actinides, uranium, and fission products and has been studied with the aim of recovering actinide elements from spent nuclear fuel. Although a significant amount of attention has been given to pyroprocessing technology as a future fuel recycling system, safeguards approaches are challengeable because of a lack of international experience with safeguarding pyroprocessing facilities beyond those at a pilot scale. Safeguards have primarily depended on nuclear material accountancy with the measurement uncertainties inherent in nuclear material flow. When the weakness of nuclear material accountancy is addressed, the quantity of material unaccounted for (MUF) is generally regarded as an important measure of the safeguardability of a facility. Statistically, the observed MUF is a random variable that is an estimate of the true MUF because the observed MUF is affected by measurement errors. The MUF uncertainty can be calculated by properly combining the random error and systematic error of the nuclear material accounting measurement. Therefore, in this study, a conceptual design for estimation of the uncertainty of MUF that can occur in a reference pyroprocessing facility (REPF) is developed, where REPF is a model used to optimize the safeguardability of a future pyroprocessing facility.