ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Bo-Young Han, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 369-377
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT13-A16986
Articles are hosted by Taylor and Francis Online.
Pyrochemical processing (pyroprocessing) was developed to recover plutonium that is inherently comingled with minor actinides, uranium, and fission products and has been studied with the aim of recovering actinide elements from spent nuclear fuel. Although a significant amount of attention has been given to pyroprocessing technology as a future fuel recycling system, safeguards approaches are challengeable because of a lack of international experience with safeguarding pyroprocessing facilities beyond those at a pilot scale. Safeguards have primarily depended on nuclear material accountancy with the measurement uncertainties inherent in nuclear material flow. When the weakness of nuclear material accountancy is addressed, the quantity of material unaccounted for (MUF) is generally regarded as an important measure of the safeguardability of a facility. Statistically, the observed MUF is a random variable that is an estimate of the true MUF because the observed MUF is affected by measurement errors. The MUF uncertainty can be calculated by properly combining the random error and systematic error of the nuclear material accounting measurement. Therefore, in this study, a conceptual design for estimation of the uncertainty of MUF that can occur in a reference pyroprocessing facility (REPF) is developed, where REPF is a model used to optimize the safeguardability of a future pyroprocessing facility.