ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Chad L. Pope, Michael J. Lineberry
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 335-348
Technical Paper | Radiation Transport and Protection/Radioisotopes | doi.org/10.13182/NT13-A16983
Articles are hosted by Taylor and Francis Online.
This paper compares measured results with simulation results of neutron beam transmission through an irradiated fuel assembly. The main objective of the comparison is to establish the technical foundation for using Monte Carlo simulation to evaluate the feasibility of using neutron computed tomography for irradiated fuel assembly inspection. The measured results were obtained from an irradiated fuel assembly from the Experimental Breeder Reactor II (EBR-II), and the neutron beam was produced by the Argonne National Laboratory Neutron Radiography Reactor (NRAD). The measurements consist of a projection profile representing the relative neutron beam attenuation at a specific fuel assembly axial elevation obtained from digitized neutron radiography film. Simulation of the neutron beam and fuel assembly was performed using the Monte Carlo code MCNP5. Results presented include the measured beam attenuation projection profile, simulated neutron beam attenuation projection profiles, parametric study of simulation results, and comparison of the projection results. Comparison of the radiography-based measurement with the simulation results shows good agreement, thereby confirming that Monte Carlo simulation of neutron transmission through an irradiated fuel assembly using MCNP5 is a reliable method for evaluating the use of neutron computed tomography as a means of inspecting irradiated fuel assemblies.